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A new spectral method for solving the incompressible Navier-Stokes equations in a plane 
channel and between concentric cylinders is presented. The method uses spectral expansions 
which inherently satisfy the boundary conditions and the continuity equation and yield 
banded matrices which are efficiently solved at each time step. In addition, the number of 
dependent variables is reduced, resulting in a reduction in computer memory requirements. 
Several test problems have been computed for the channel flow and for flow between 
concentric cylinders, including Taylor-Couette flow with axisymmetric Taylor vortices and 
wavy vortices. In all cases, agreement with available experimental and theoretical results is 
very good. 

1. INTRODUCTION 

The purpose of this paper is to present a new spectral numerical method for 
simulating wall-bounded shear flows in Cartesian and cylindrical geometries. These 
flows have been under extensive theoretical and experimental investigation aimed at 
understanding the mechanics of transition and turbulence. Numerical simulations of 
these basic flows have become an important supplement to laboratory measurements. 
Among the problems that have been simulated are transition to turbulence in a 
channel [ 1, 21 and in pipes [3], the evolution of Taylor vortices in Taylor-Couette 
flow 141, and turbulent flow in a channel [5]. 

In these similations, spectral methods are often used to solve the incompressible 
Navier-Stokes equations 

all -=-VP--&vXvX”+uX”, at 
v.u=o, (lb) 
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and 
u=o at the walls, (lc) 

where P is the dynamic pressure, Re is the Reynolds number, and w  is the vorticity 
vector. Spectral methods are used because, for sufficiently smooth fields, they have a 
very high formal order of accuracy. This is particularly important in three- 
dimensional problems, in which the number of modes that can be used in each spatial 
direction is severely limited. However, spectral methods have proved difficult to apply 
to wall-bounded flows. The difficulty stems from the continuity equation (lb) and the 
no-slip boundary conditions (lc), which appear as constraints to the Navier-Stokes 
equations. When the dynamic equations (la) are time-differenced, the continuity and 
boundary constraints must be imposed on the velocity field at each time-step. Moin 
and Kim [6] have shown that when spectral methods are used, the most common 
explicit time-differencing scheme leads to meaningless calculations, because the 
continuity and boundary conditions cannot be properly enforced. They suggest 
implicit time-differencing of the viscous and pressure terms to allow the imposition of 
the constraints. 

Several schemes have been developed for the solution of Eqs. (1) using spectral 
methods. Most of these computations have used Fourier expansions in two space 
dimensions. In the method described by Moin and Kim [6], the velocity and pressure 
were expressed in terms of Chebychev polynomials (and Fourier functions). The 
momentum equations (la) are time-differenced with viscous and pressure terms 
treated implicitly. The resulting equations are solved simultaneously with the 
continuity equation and the boundary condition equations for the Fourier-Chebychev 
coefficients. A nearly block-tridiagonal matrix results in the channel problem, in 
which Cartesian coordinates are used. It was found that in cylindrical coordinates a 
much more complicated matrix results, one that requires 750N operations to solve, 
where N is the number of radial modes. 

In another aproach, Orszag and Kells [ 1 ] have used a fractional step scheme, 
using Chebychev polynomials, which seems to be quite efficient for the channel 
problem. Similar schemes have been used in cylindrical coordinates for flow in a pipe 
[ 3 ] and Taylor-Couette flow [4]; however, they result in matrices that are solved in 
0(N2) operations. In the fractional-step scheme used by these authors, each time-step 
is split into three independent “corrections.” First, the nonlinear terms are explicitly 
time-advanced, yielding an intermediate field G. Then the pressure correction is 
applied, enforcing the continuity equation on the second intermediate field c. Finally, 
the viscous correction is performed, allowing the imposition of the boundary 
conditions on the velocity field at the new time-step. Note that imposing the 
continuity constraint on the intermediate field $ leads to an error in the continuity 
equation of order Af/Re for the final field. This appears to cause no serious problems 
in the channel calculations of Orszag and Kells; however, Marcus et al. [4] 
experienced some accuracy-stability problems related to the splitting when 
calculating Taylor-Couette flow. 

A third method is given by Kleiser and Schumann [2], who have developed a 
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method for the channel problem using Chebychev polynomials. It requires the 
solution of three Helmholtz equations for the velocity components and a Poisson 
equation for the pressure. A procedure is used to determine the proper boundary 
conditions for the pressure to ensure satisfaction of the continuity equation. This 
method is quite efficient, though it has not yet been extended to non-Cartesian coor- 
dinates. Finally, Leonard [7] and Leonard and Wray [8] have recently developed a 
new method and applied it to flow in a pipe. A spectral representation based on 
Jacobi polynomials was used which inherently satisfies the continuity and boundary 
constraints. 

In the method described in this paper, we follow Leonard [7] and represent the 
velocity field using vector functions which satisfy the continuity equation and 
boundary conditions. In this way, the constraints (lb) and (lc) are automatically 
satisfied. Satisfying the continuity equation also removes a degree of freedom, and 
since the pressure is eliminated from the equations only two dependent variables are 
left (in three-dimensional problems). Application of this method using Chebychev 
polynomials in Cartesian coordinates is described in Section 2. In Section 3 the 
method is developed for flow between concentric cylinders. In cylindrical coordinates, 
the resulting matrices are solved in 235N operations. Section 4 contains the results of 
some test problems used to verify the validity of the method. 

2. NUMERICAL METHOD IN CARTESIAN COORDINATES 

In this section, a method for the numerical solution of the incompressible 
Navier-Stokes equations in a domain bounded by two parallel walls is presented. In 
the time advancement, the viscous term is treated implicitly, whereas an explicit 
scheme is used for the nonlinear (convective) terms. In this mixed explicit-implicit 
time-differencing, the explicitly treated terms act as a forcing term to the implicit part 
of the calculation. In essence, then, an implicit time-advancement procedure is needed 
for the forced Stokes equations (where the nonlinear term is replaced by a forcing 
term). It will be convenient in much of the discussion to follow to consider only the 
Stokes equations; however, the Navier-Stokes equations can be easily solved with 
any scheme for solving the Stokes equations, given a technique for computing u X w. 

Consider the forced Stokes equations, 

al 
at- 

--VP-&xvxv+s 

v*v=o, v = 0 at the walls, 
(2) 

where v is the velocity vector and f is some forcing function. It is assumed that the 
flow is periodic in the x and z directions and that the walls are located at y = f 1 
(x, y, z are Cartesian coordinates; the cylindrical case will be discussed in Section 3). 
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2.1 Velocity Representation 

A finite spatial representation of the velocity v is needed. Since v is constrained to 
satisfy the continuity equation and the boundary conditions, we choose a represen- 
tation v,, which inherently satisfies these constraints. 

wj,&, y, z) = II/( y; k,, k,) eikxxeikzr, 

where 

k -j2’ m27c 
x 

=x ’ 
-J<j<J, k,=L, --M<m<M 

L 

(3) 

(4) 

are the wave numbers, L,, L, are the periods in x and z, respectively, aj,,(t) are the 
coefficients of the expansion, and u,(y) are a set of vector functions chosen to satisfy 

v * Wjm, = 0, u,(y= *l)=O. (5) 

The representation must also be complete so that for sufficiently large J, M, and L, 
all vector fields of interest can be represented by (3). 

Substituting the representation (3) into the Stokes equations (2), one obtains 
ordinary differential equations for the coefftcients aim,(t). This is accomplished by 
using a weighted residual method which involves dot multiplying the equations by a 
set of weight vectors and integrating over the computational domain. Vector weight 
functions +ji’.m,,,, are chosen as follows: 

+ji',m',l' = &,(y; k,, k,) e-ihge-ikJ, 

(6) 

with 

v ’ +j!,mt,,! = 0, &(y=*l)*n=O, (7) 

where n is a unit vector normal to the walls. When the weight vectors are formed in 
this way, it can be shown, using integration by parts, that the pressure term is 
eliminated from the resulting equations. 

After using the orthogonality property of the complex exponential to evaluate the x 
and z portion of the integrals, the weighted residual method yields the following set of 
equations for each wave-number set k,, k, : 

where fr, and uI depend parametrically on k, and k,, 2 is the Fourier transform of f, 
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and V^X is the Fourier transformed curl operator. Note that the 
have been dropped for brevity. These equations can be written in 

A&$3a+F, 

where A and B are (L + 1) X (L + 1) matrices with elements 

A,,,, = 1 ’ Cl! . u, dy, -I 

I ’ B,,,, = - & - 6% uI dy, 
-1 

subscripts j and m 
the compact form 

(9) 

a is the vector with elements a,, and F is the vector with elements 

F,, = 
I 

’ c,, .Tdy. (11) 
-1 

Equation (9) is a system of linear ordinary differential equations which can be solved 
numerically using any standard time-discretization scheme. However, it should be 
noted that even an explicit scheme will require the “inversion” of the matrix A; 
therefore, unless A is much more sparse than B, there is no computational advantage 
in using an explicit scheme. 

The method described above can also be derived from the variational formulation 
of the Stokes equations (see [9]). C onsideration of the variational form leads to the 
conclusion that the weight functions 0, as well as the velocity representation functions 
w, must satisfy a completeness condition. It can also be shown using projection 
arguments that a special case of the method presented here (where the vectors 4 and 
w  are the same) yields a solution to the Stokes equation which has minimum square 
error in the vorticity. 

2.2 Choosing Vector Functions 

We now turn to the problem of choosing the vectors g,, and uI. There is 
considerable freedom in this choice. The vectors presented here were constructed to 
yield matrices A and B in Eq. (9) which are banded with small bandwidths. This is 
easily accomplished when one of the wave numbers (say k,) is zero. First, vectors 
will be constructed for this special case; later the results will be extended to the 
general case. 

It becomes necessary/to split the sets of vectors 5 and u into two classes (g+, 5-) 
and (u+, u-), respectively, each class having a different functional form. This is 
equivalent to independently representing two components of the velocity vector, with 
the third determined by the continuity equation. To obtain tightly banded matrices, 
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we desire that the equations for u + be decoupled from the equations for u-, that is, 

l s; I 
1 

*II,-dy=O, t,‘l -V6-%u;dy=O, 
-1 -1 

.l 

!  -, 5; .ufdy=O, f 5; .V=%r,?dy=O. 
-1 

A convenient choice which satisfies this requirement (for k, = 0) is 

(12) 

(13) 

where g, Q, h, and P are indexed functions of y to be chosen later, and the superscript 
primes indicate differentiation with respect to y. It can be easily verified that these 
vectors satisfy the continuity conditions (5) and (7); the boundary conditions will be 
satisfied if 

&?,(Y=fl)=O, h,(y = f 1) = 0, 

&(y= *l)=O, Q,t(y = f 1) = 0. 
(14) 

The integrals in Eqs. (10) can be evaluated by using the identity in Cartesian coor- 
dinates (for V . u = 0), 

vxvxu=-v=u, (15) 

and integrating by parts, with the results 

’ Af - l’,l - 1 ’ g;. u,? dy=- Q&Q,) dyv 
-1 I -1 

B;,, = - f -1 tI’; * (v- u:> dv = - s’, (PQl,)(Yg,) dy, 

A,,= ' ' 1 I 

1 
-,5;. u;dy= P,,h, dy, 

-1 

(16) 
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and 

B,,=- 
!’ l -I 

5; * (V6-G u;) dy = j1 P,(wz,) dy, 
-1 

where 40 is the Fourier-transformed Laplacian operator. 

Therefore, when the vectors (13) are used, Eq. (9) is decomposed into two 
independent equations for the u + and u - coefficients, 

=&B+a+ +F+, 

A- da- -=&B-a- + F-, 
dt 

with matrices as defined in (16) and F + and F- defined as follows: 

It should be mentioned that in Cartesian coordinates Eqs. (18) can be derived in a 
more straightforward way (this will not be the case in cylindrical coordinates; see 
Section 3). Equation (18b) is readily obtained from the z equation of (2), after 
Fourier transforming (again k, = 0), 

If the representation 

(20) 

is used in a weighted residual method with weights P,,, Eq. (18b) is obtained. For 
Eq. (18a), the curl operator is used twice on (2), which yields 

-+xv)=- &vx)4”+vxvxf. (22) 
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After Fourier transforming and using (15), the y equation of (22) is the fourth-order 
equation 

-; (Lq = - & (~‘v”,) + (V6zi T),. (23) 

The representation 

fi, = 1 a: g, (24) 
I=0 

and the weight functions Q,, yield Eq. (18a). The continuity equation evaluated at the 
walls requires 

+y=* l)=O, (25) 

which provides the additional boundary conditions on v,, to make Eq. (23) well 
posed. The x velocity is determined from the continuity equation. Thus, for this case, 
solution of (2) after Fourier transforming is equivalent to the solution of (20) and 
(23). Equations (20) and (23) were solved in a method used by Patera and Orszag 
[lOI* 

Extension of the vectors used above to the general case when k, # 0 and k, # 0 is 
straigthforward. By rotating the coordinate system about the y axis, the general 
problem can be reduced to the k, = 0 case already discussed. The new axes (x’ and 
z’) are rotated such that the x’ axis is aligned with the vector 

kxex + k,e,, 

where e, and e, are unit vectors in the x and z directions. Then 

k,, = (k; + kf)1’2, k,, = 0, (26) 

and the vectors (13) can be used. This is the coordinate transformation at the heart of 
Squire’s theorem in the hydrodynamic stability of plane parallel shear flows [ 111. 

Finally, the vectors defined in (13) are incomplete when both k, and k, are zero. 
For this case, the following set of vectors is used: 

(27) 
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This leads to identical matrices for the plus and minus equations; the derivation 
follows that for Eq. (18b). 

2.3 Quasi-orthogonal Functions 

The expansion functions Q, g, h, and P must now be chosen. Strictly orthogonal 
functions [which would lead to diagonal matrices A and B in (18)] should not be 
used, because requiring orthogonal functions to satisfy boundary conditions (14) 
imposes extraneous conditions on higher derivatives of the functions, which degrades 
the rapid convergence of the method [ 121. Instead, we use quasi-orthogonal functions, 
which lead to banded matrices A and B, and do not suffer from this convergence 
problem. Quasi-orthogonal functions are constructed from a set of orthogonal 
functions which admit general boundary conditions (see [ 121 for a discussion of this 
class of functions). Since these functions do not inherently satisfy any boundary 
conditions, boundary conditions are imposed by forming linear combinations of them 
to make the quasi-orthogonal function. This construction must be done in such a way 
as to make the matrices A and B, which involve integrals of the functions and their 
derivatives, banded. Orthogonal polynomials are suitable for this purpose, because 
they satisfy recursion relations which make this construction easier. 

The Chebychev polynomials have been chosen for this application because they 
have two properties that are particularly useful. 

(1) They are related to the cosine function through a coordinate transfor- 
mation [ 13 ]; this allows the use -of the fast Fourier transform in evaluating F. 

(2) They are particularly efficient for resolving boundary layers near the walls 
(y= zkl) [12]. 

The quasi-orthogonal functions g, Q, P, h are constructed as follows: 

g, = (1 -.02 TLv>t h, = (1 -Y”> T,(Y), 
T 

Q,= (&- (I+ IF);- 1) +I(& ___ 
,i 

4(1 -y2)“2, (28) 

P, = (T,- 1 - T,, J/21( 1 - y*)“*, 

where T, is the Chebychev polynomial of order 1 and the factor l/(1 -y*)“’ 
appearing in Q and P is the weight function for the Chebychev orthogonality relation. 
These functions have been constructed so that they and their derivatives have simple 
forms when expressed as linear combinations of Chebychev polynomials, which 
guarantees that the matrices A and B are banded. 

Other orthogonal polynomials can be used to construct quasi-orthogonal functions. 
This is a consequence of the recursion and differential relationships that orthogonal 
polynomials satisfy (the Chebychev relationships are particularly simple). Thus there 
are many possible sets of quasi-orthogonal functions that can be used to meet 
requirements that might be imposed in a given problem. For example, Leonard and 
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Wray [8] have used functions based on shifted Jacobi polynomials to satisfy certain 
constraints in the calculation of flow in a pipe. 

With the choices of the functions Q, g, P, h, the method is completely defined. Of 
great interest is the amount of computation required to implement this method. After 
taking advantage of the decoupling of even and odd functions, both matrices A ’ and 
B ’ have seven nonzero diagonals of which two are subdiagonals and four are super- 
diagonals, A - and B- have four nonzero diagonals, one being a subdiagonal and two 
being superdiagonals. Also, the elements in the matrices depend only on the square of 
the wave numbers k, and k, so that at least two wave-number sets can be solved 
simultaneously. The result is that for each wave-number set k,, k,, the matrices 
arising from an implicit time-differencing of Eqs. (18) can be solved in 30N real 
additions and multiplications, where N is the number of u + vectors used (three less 
than the highest-order Chebychev polynomial used). There is some additional 
computation required to calculate the forcing vector F and to perform the coordinate 
rotations discussed earlier. The total cost is then 50N operations. Thus the method is 
operationally efficient, in addition to offering savings in computer storage by 
reducing the number of independent variables. 

3. APPLICATION TO CYLINDRICAL COORDINATES 

The concepts presented in Section 2 will now be applied in cylindrical coordinates 
to the solution of Eq. (2). We shall consider the flow in an annulus. In this case the 
flow is periodic in the axial (z) direction and the azimuthal (8) direction. The inner 
and outer walls are located at r = ri and r = ro, respectively. Using representations 
and weight vectors as in (3) and (6), a result (for cylindrical coordinates) similar to 
(8) is obtained: 

where S,(r) and u,(r) depend parametrically on k, and k,, the 13 and z wave numbers. 
The equations &n be written as 

Ada- ” 
dt 

zBa+F, 

where A and B are matrices with elements. 

B,l,,=- “&,.V6%u,rdr, s ri 

(30) 

(31) 
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and F is the forcing vector, 

F,,= (32) 

Again, it is desirable to choose 5 and u to make the matrices A and B tightly 
banded. The first step is to attempt to uncouple the equations for the two sets of 
vectors k+, u+, and c-, u-. In cylindrical coordinates, however, the appearance of ue 
in the r-component of V x V x u (for V . u = 0) and U, in the 0 component makes the 
decoupling more difficult than in the Cartesian case. 

The following vectors satisfy the decoupling requirement, though they have an 
important defect to be discussed later. 

-k 
u; - -62 g, 

i 1 

= 

0 

where Q,, and g, are indexed functions of I [not the same as in (28)], and v^x* is the 
complex conjugate Fourier transformed curl operator. Satisfaction of the continuity 
equation is guaranteed by the identity V . (V x u) = 0. In order to enforce the 
boundary conditions, we require 

g,(r = ri, r,) = 0, Q/(r = ri, ro) = 0, 

g;(r=ri,ro)=O, Q;(r = ri, ro) = 0. 
(34) 

Equation (30) now decomposes into two equations, as in (18). However, the vector 
functions defined in (33) are an incomplete set, because the imposition of boundary 
conditions in (34) forces the 6’-velocity to satisfy the condition 

3~0 at 
& ’ 

r = ri, r. (35) 

which is too restrictive. To alleviate this problem, the vectors in (33) are augmented 
with two extra vectors, 
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where 1 and 1’ can be 0 or 1. With this addition, au,/& can have arbitrary values at 
the walls. When the extra vectors are included, Eqs. (18a) and (18b) become 

At da +G+A:$=j!--(B:a’+B,+a”)+Ft, 

A _ da‘- 
-dl+A;~=~(B_a-+B;ao)+F-, 

AO,G+A!$ +Ai$=&(B:a’ +B?a- +Bia”)+Fo, (37c) 

where the matrices are defined as 

The subscripts-superscripts y and /3 can be +, -, or 0. The equations in (37) are 
coupled, but in a weak way that will not appreciably affect the computational 
efficiency of the method (see below). 

The functions Q, g, P, and h are again constructed with Chebychev polynomials, 

g, = r(l -Y212 T,(Y), h = r(l -Y’) T,(Y), 
2 

Q,= (1 42,1,2 ( 
T 1-2 T, T 

4(1- 1)1 - 2(1- 1)(1+ 1) + 4($1 ’ i 
(39) 

P,= (T,-, - T,+,)/21(1 -Y’)~‘~, 

where 

Y= 
2r - r. - ri 

’ r. - ri 

so that y is -1 where r = ri and +l where r = ro. These are the same functions used 
in the Cartesian problem, except for the factors of r and r*. These factors are 
included to cancel the various l/r’s appearing in the Y operators, which is necessary 
if the Chebychev orthogonality relations are to be used to evaluate the integrals in 
Eqs. (38). 

The coupled equations (37a)-(37c) can be written as a single equation, as in (30) 
(a is composed of the vectors at, a-, a”). The resulting matrices A and B have the 
special form shown in Fig. 1. Also shown are the bandwidths for the various nonzero 
bands in the submatrices. Though this matrix is not strictly banded, it can be solved 
with no difftculty. As in the Cartesian case, there are wave-number symmetries which 
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FIG. 1. Structure of matrix A (B is identical). Submatrices shown are as defined in (38). Shaded 
areas indicate nonzero elements, and dimensions refer to numbers of rows, columns, or diagonals. 

allow the solution of more than one wave-number set at a time. Including these 
symmetries, the operation count for the matrix solution for each wave-number set k,, 
k, is 235N additions and multiplications, where N is the number of u+ vectors (four 
fewer than the highest order Chebychev polynomials used). 

The representation presented above is incomplete when k, = 0. The following 
vectors are used for the special case k, = 0, k, # 0. 

(40) 

where Q, g, P, and h are as defined in (43). When k, = 0 and k, = 0, the vectors in 
(40) are incomplete. In this case the following vectors are used: 
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The vectors in (40) and (41) are very similar to the ones 
and lead to uncoupled sets of equations. Solution for 
computation than the general case considered above. 

used in the Cartesian case 
these cases requires less 

(41) 

4. NUMERICAL RESULTS 

The numerical methods described in Sections 2 and 3 have been applied to several 
problems. In all cases, the Navier-Stokes equations were solved by replacing the 
forcing function in Eq. (2) with the nonlinear terms evaluated using the 
pseudospectral technique (collocation). Crank-Nicholson time-differencing was used 
for the viscous terms, and Adams-Bashforth was used for the nonlinear terms. For 
the problems in Subsection 4.2, the nonlinear terms were computed by collocation on 
a grid large enough to eliminate aliasing. 

4.1 Cartesian Test Cases 

To test the Cartesian version of the method (Section 2), the evolution of an oblique 
decaying Tollmien-Schlichting wave in a channel was computed. The computation 
was done for Re = 1500, k, = 1, and k, = 1, where Reynolds number is based on 
centerline velocity and channel half-width. Chebychev polynomials through order 32 
were used. Initial conditions for the computation were obtained from an Orr-Som- 
merlield eigenfunction program [ 141. The amplitude of the disturbance was initially 
set to 10e5 so linear disturbance theory was applicable. The wave was allowed to 
evolve for 3.9 nondimensional time units (40 time-steps), at which time the decay rate 
was within 0.2% of that obtained from linear theory, and the propagation velocity 
was within 0.05%. 

4.2 Cylindrical Test Cases 

The cylindrical version of the method (Section 3) was used to compute the flow 
between concentric cylinders with the inner cylinder rotating (Taylor-Couette flow). 
For sufficiently high Reynolds numbers, Taylor-Couette flow consists of counter- 
rotating, axisymmetric, toroidal vortices with a range of possible wavelengths. At still 
higher Reynolds numbers, these vortices become nonaxisymmetric (wavy) with 
several possible azimuthal wavelengths (see [ 15, 161). Five axisymmetric problems 
and three nonaxisymmetric problems have been computed. The results for the 
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axisymmetric cases are compared to the finite-difference calculations of Meyer [ 17 1, 
the experiments of Donnelly and Simon [ 181, and the stability analysis of DiPrima 
and Eagles [ 191. The three-dimensional cases are compared to the experiments of 
Coles [15] and the stability analysis of Jones [2Oj. 

The first flow to be computed was Meyer’s, because velocity profiles from his 
calculation were readily available. For this flow, the Reynolds number based on 
(r, - ri) is 400, the radius ratio is 5/6 (q = ri/rO = i), and the axial wavelength is 
1.05 [A = l.O5(r, - ri)]. Th e calculation was performed using 21 Fourier modes in 
the z direction and Chebychev polynomials through 2 1st order in the r direction (17 
U’ and u- functions). The nonlinear terms were computed on a 32 X 33 grid, thus 
eliminating aliasing. A disturbance to the laminar state was introduced and allowed 
to grow into steady-state Taylor vortices. In Fig. 2, the steady-state B-velocity as a 
function of r is shown for the z location, where the normal velocity u, is zero. Results 
of the present calculation and Meyer’s 40 x 40 finite-difference calculations are 
shown; the agreement is very good. For the present calculation, the torque per unit 
length required to drive the inner cylinder (1.953 x 104) was within 0.6% of the value 
reported by Meyer (1.965 x 10”). 

Torque and stability calculations were performed for two geometries, a narrow gap 
where r= 0.95 and a wide gap where q = 0.5. These computations were done with 
nine Fourier modes and Chebychev polynomials through order 10, with nonlinear 
terms computed on a 16 x 17 grid. The disturbance wavelength in the z direction was 
assumed to be the wavelength corresponding to the minimum critical Reynolds 
number (2.009 and 1.988 for the narrow and wide gap, respectively [ 191). The results 
of these calculations are summarized in Table I. 

FIG. 2. Azimuthal velocity in Taylor-Couette flow (Re = 400, 1= 1.05, q = 0.833) as a function of 
r at the I location, at which radial velocity is zero. Shown are the present calculation (-) and the 
calculation of Meyer (0) [ 171. r,, rC, r0 are inner cylinder, centerline and outer cylinder, respectively. 
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TABLE I 

Results of Axisymmetric Calculations 

Critical Reynolds No. 

Stability Present 
analysis [ 151 calculation Re 

Torque, G 

Experimental Present 
I191 calculation 

Narrow 
gap 

?j = 0.95 184.99 I85 195 5.26 x IO’ 5.42 x 10’ 

Wide gap 
q = 0.5 68.19 68.2 78.8 1.479 x 103 1.487 x IO3 

The critical Reynolds number for transition to axisymmetric Taylor vortices was 
determined by searching for the Reynolds number at which a small disturbance 
neither decayed nor grew. A disturbance of the desired wavelength was added to the 
laminar solution, and the time evolution of the first Fourier coefficient was 
monitored. The disturbance would decay rapidly at first, until it consisted of only the 
least stable eigenmode; it would then either slowly grow or slowly decay, depending 
on whether the Reynolds number was above or below critical. Critical Reynolds 
numbers found in this way are presented in Table I; note that they are in excellent 
agreement with the analysis of DiPrima and Eagles [ 191 for both narrow-gap and 
wide-gap problems. 

For the torque calculations, a disturbance to the laminar solution was allowed to 
grow to steady state. The nondimensional torque G (torque per unit length 
normalized by pr’, where Y is the kinematic viscosity of the fluid) was computed from 
the formula 

G = 2nr Re 1 (r&) - 2ii, , (42) 

where the overbar denotes average over z. Comparison of these calculated torques in 
Table I with the data of Donnelly and Simon [ 181 should be made with some caution, 
for two reasons. First, the axial wavelength of the Taylor vortices in the experiment 
was not measured. The wavelength corresponding to minimum critical Reynolds 
number was used in the calculations as a good guess, because the Reynolds numbers 
are not far above the critical Reynolds numbers, and the experimental conditions 
were obtained by slowly increasing the speed of the inner cylinder from zero. Second, 
the experimental torque value in the subcritical regime are not in very good 
agreement with the torques predicted for laminar Taylor-Couette flow. This is 
especially true for the narrow-gap experiment, in which the experimental torque is 
consistently 3% below the theoretical value. For the wide-gap experiment, the data 
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are within 0.6% of the laminar torque for Reynolds numbers far below critical. In 
light of these considerations, the agreement of the present calculations with the 
experimental data of Donnelly and Simon is as good as can be expected (3% and 
0.5% for narrow and wide gaps, respectively). In Fig. 3, contours of the secondary 
flow-stream function are plotted for the narrow-gap case, showing the familiar Taylor 
vortices. 

The critical Reynolds number for the transition to nonaxisymmetric flow for the 
case ;1= 2.007, r = 0.877, m = 1 (where the &wave length is 2x/m), was determined 
as before by introducing a disturbance and allowing it to grow or decay. In this case, 
the base flow was Taylor vortices calulated with nine Fourier modes and Chebychev 
polynomials through tenth order. For the three-dimensional calculations, nine Fourier 
modes were used in the 6 direction. The critical Reynolds number was found in this 
way to be 130, in good agreement with the value of 13 1 reported in [20]. The growth 
rate and fundamental frequency (precession speed), for an unstable nonaxisymmetric 
mode (Re = 177.6, A = 2.007, q = 0.877, m = 6) were found by allowing a small 
disturbance to develop until it consisted of only the unstable mode. Resulting values 
for growth rate (1.11 x lo-*) and precession speed (2.54) are within 0.6% and 0.5%, 
respectively, of the values reported by Jones [20]. 

Fully developed wavy vortices (Re = 167, A = 2.54, q = 0.877, m = 5) were 
computed using nine Fourier modes in the 19 and z directions and Chebychev 
polynomials through tenth order. Figure 4 shows contours of axial velocity at 
r = 0.882r, (close to the inner cylinder), showing the wave in the 19 direction. The 
calculated fundamental frequency of the flow was 2.16 oi, where CC)~ is the inner- 
cylinder rotation frequency. This is in fair agreement with the value of 2.11 LC)~ taken 
from Fig. 7 of [15]. 

FIG. 3. Secondary flow stream-function contours for Taylor-Couette flow Re = 195, I = 2.004, 
q = 0.95). Solid lines are positive contours; dashed lines are negative contours. 
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FIG. 4. Contours of axial velocity at r = 0.822r, for fully developed wavy vortices (Re = 167, 
i = 2.54, g = 0.877, m = 5). 

4.3 Observations on Aliasing Errors 

Aliasing errors in the computation of the nonlinear terms are a potential problem 
in calculations with marginal resolution. In all of the calculations cited in 
Subsection 4.2, the nonlinear terms were computed using collocation grids large 
enough to eliminate aliasing by the 3 rule. However, it is not clear what effect 
aliasing has, especially since the nonlinear terms are computed as u x o, so in the 
absence of viscosity and time-differencing errors, kinetic energy is always conserved 
[21]. Several calculations were performed with and without aliasing, to determine 
what effects aliasing has in these problems. 

The development of axisymmetric Taylor vortices (Re = 678.8, L = 2.35, 
v = 0.877) from an initial disturbance has been computed in four ways: unaliased 
with 21 x 22 modes (Fourier modes X Chebychev modes); unaliased with 15 x 17 
modes; unaliased with 9 x 11 modes; and aliased with 15 X 17 modes. Note that the 
9 X 11 calculation was performed using a 16 X 17 collocation grid (as was the 
15 x 17 aliased calculation), so that aliasing was removed by the 3 rule. Plots of the 
time evolution of three of the Fourier-Chebychev coefficients are shown in Fig. 5. In 
Fig. Sa, note that the unaliased 15 X 17 and 21 x 22 calculations are in good 
agreement, indicating that they are approaching the exact solutions. The 9 x 11 
unaliased calculation clearly has inadequate resolution, though it does exhibit some 
of the qualitative behavior of the more accurate solutions. The accuracy of the aliased 
calculation is poor; it exhibits qualitatively different behavior from that of the other 
cases. In Fig. 5b, the aliased calculation shows the correct qualitative behavior. 
Finally, in Fig. 5c, the aliased and 9 X 11 unaliased solutions are greatly different 
from each other and from the more accurate calculations. In Fig. 6, steady-state 
azimuthal velocity profiles at a particular z station are shown for the four 
calculations. Here the inadequacy of the 9 x 11 calculation is evident; however, the 
aliased solution is in fair agreement with the higher order calculations. 
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FIG. 5. History of Fourier coefficients after an initial disturbance to laminar Taylor-Couette flow 
(Re = 678.8, A= 2.35, q = 0.877) for aliased and unaliased calculations. Coefficients are for (a) vg, T, 
term with k, = 27r/& (b) v,, T,, k, = Zn/l, (c) v,, T,, k, = 87r/A. 

From these observations, it appears that for the problem considered here, the 
effects of aliasing are more severe in transients than in steady state. In the steady 
state, the 15 X 17 aliased calculation is nearly as accurate as the 15 x 17 unaliased 
calculation. However, in the transient the 9 X 11 unaliased calculation and its 
15 x 17 aliased counterpart are both unsatisfactory. This suggests that in time- 
dependent problems, aliasing errors could significantly degrade the accuracy of a 
calculation. 
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FIG. 6. Azimuthal velocity in Taylor-Couette flow (Re = 678.8, ,I= 2.35, and q = 0.877) as a 
function of r at the z location, at which the radial velocity is zero. Aliased and unaliased calculations are 
shown: rir rc, and r0 are inner cylinder, center, and outer cylinder, respectively. 

5. CONCLUSIONS 

A spectral method for the solution of the Navier-Stokes equations for plane 
channel flow and flow between concentric cylinders has been presented. The method 
uses an expansion in vector functions which inherently satisfy the boundary 
conditions and the continuity equations. This has the advantage of treating the 
boundary and continuity constraints exactly and reducing the number of variables per 
spectral mode. Quasi-orthogonal functions have also been introduced that lead to 
banded matrices which are solved in O(N) operations. These quasi-orthogonal 
functions have potential application in other problems. 

The method has been used to compute the evolution of Tollmien-Schlichting waves 
in the channel and axisymmetric and three-dimensional Taylor vortices in 
Taylor-Couette flow. In all cases, agreement with available experimental and 
theoretical results has been very good. 
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